Chapitre nº 10: Fonctions trigonométriques

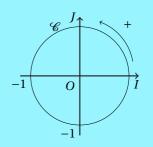
Terminale, 2021-2022

1 Repérage sur un cercle trigonométrique

Définition 1 (Cercle trigonométrique)

On munit le plan d'un repère orthonormé (O; I, J). Le **cercle trigonométrique** \mathscr{C} est le cercle de centre O et de rayon 1, sur lequel on choisit une orientation :

- ★ le sens direct (ou positif ou encore trigonométrique)
 est contraire au sens de rotation des aiguilles d'une montre;
- ★ le sens indirect (ou négatif) est le sens de rotation des aiguilles d'une montre.



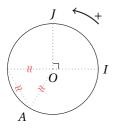
M(x) 0 -1 $-\frac{\pi}{2}$ -2 $-\pi$

Propriété 2

Pour **repérer un point** *M* **du cercle trigonométrique**, on enroule autour du cercle un axe orienté, gradué, d'origine le point *I*.

On peut alors associer, au point M, un réel x, abscisse d'un point de l'axe qui vient se superposer au point M.

- **Remarque 1.** \star Lorsqu'on enroule l'axe dans le sens direct, ce sont des points d'abscisses positives qui se superposent à M, dans le sens indirect, ce sont des points d'abscisses négatives.
 - \star Tout point sur le cercle trigonométrique se repère par **plusieurs nombres réels**, distants d'un multiple de 2π , selon le nombre de tours complets de l'enroulement de l'axe.



Exemple 1. Lire l'abscisse associée à un point

Donner un nombre associé aux points J et A sur le cercle trigonométrique cicontre tels que $\widehat{IOJ} = 90^{\circ}$ et $\widehat{IOA} = 120^{\circ}$.

 $\widehat{IOJ} = 90^{\circ}$ donc \widehat{IJ} mesure un quart de la longueur du cercle dans le sens positif.

 $\frac{2\pi}{4} = \frac{\pi}{2}$ donc un nombre associé à J est $\frac{\pi}{2}$.

Tout nombre de la forme $\frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, est associé à ce même point J.

 \widehat{IOA} = 120° donc \widehat{IA} mesure un tiers de la longueur du cercle dans le sens négatif.

Donc un nombre associé à A est $-\frac{2\pi}{3}$.

Tous les nombres associés à A s'écrivent sous la forme $-\frac{2\pi}{3} + k \times 2\pi$, $k \in \mathbb{Z}$.

Exemple 2. Placer un point sur un cercle

Tracer un cercle trigonométrique et placer les points associés aux réels π ; $-\frac{\pi}{2}$; $\frac{\pi}{3}$ et $-\frac{\pi}{6}$.

La longueur d'un cercle de rayon r est donnée par la formule : $\mathcal{L} = 2\pi r$.

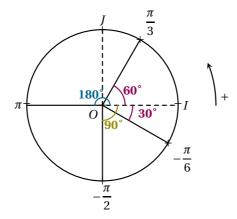
Pour le cercle trigonométrique, cette longueur est donc de 2π , car r = 1.

Le nombre π correspond à un parcours d'un demi-cercle dans le sens positif soit 180°.

Le nombre $-\frac{\pi}{2}$ correspond à un parcours d'un quart de cercle dans le sens négatif soit 90°.

Le nombre $\frac{\pi}{3}$ correspond à un parcours d'un sixième de cercle dans le sens positif soit 60° .

Le nombre $-\frac{\pi}{6}$ correspond à un parcours d'un douzième de cercle dans le sens négatif soit 30°.



Définition 3 (radian)

Soit \mathscr{C} le cercle trigonométrique te M un point du cercle.

La mesure **en radian** de l'angle \widehat{IOM} est la longueur d'arc \widehat{IM} intercepté par cet angle. Le symbole associé à cette unité de mesure est **rad**.

Remarque 2.

①
$$360^{\circ} = 2\pi \text{ rad},$$

$$180^{\circ} = \pi \text{ rad},$$

$$60^\circ = \frac{\pi}{3} \text{ rad}$$

② toujours veiller au paramétrage de sa calculatrice (degré ou radian)

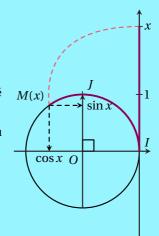
2 Coordonnées d'un point du cercle trigonométrique

Définition 4 (Sinus, cosinus et tangente)

On considère le cercle trigonométrique dans un repère (O; I, J).

- ★ Pour tout nombre x, le cosinus et le sinus de x,
 notés cos x et sin x, sont les coordonnées du point M du cercle associé à x. On écrit alors M(cos x; sin x).
- ★ Pour tout nombre $x \neq \frac{\pi}{2} + k \times 2\pi$ (avec k entier relatif), la **tangente** du nombre x est définie par :

$$\tan x = \frac{\sin x}{\cos x}.$$



 $-1 \le \cos x \le 1$

 $-1 \le \sin x \le 1$

Preuve. Dans les conditions de la définition, comme le repère est orthonormé, on peut utiliser la formule suivante :

$$OM = \sqrt{(x_M - x_O)^2 + (y_M - y_O)^2} \text{ soit } OM = \sqrt{(\cos x - 0)^2 + (\sin x - 0)^2}$$

d'où $OM^2 = (\cos x)^2 + (\sin x)^2$.

Or, le cercle trigonométrique est de rayon 1, donc $(\cos x)^2 + (\sin x)^2 = 1$

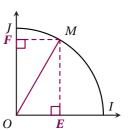
Remarque 3. Pour simplifier l'écriture, on peut utiliser $(\cos x)^2 = \cos^2 x$ et $(\sin x)^2 = \sin^2 x$.

Remarque 4.

Pour x un nombre de $\left]0; \frac{\pi}{2}\right[$, l'angle \widehat{IOM} est un angle aigu. À partir de la figure ci-contre, dans le triangle OME rectangle en E, on a :

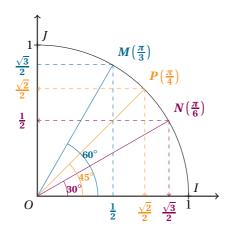
$$\cos \widehat{EOM} = \frac{OE}{OM} = OE = \cos x \text{ d'où } \cos x = \cos \widehat{IOM}.$$

$$\sin \widehat{EOM} = \frac{ME}{OM} = ME = OF = \sin x \text{ d'où } \sin x = \sin \widehat{IOM}.$$



Propriete 6 (Valeurs remarquables)						
angle \widehat{IOM}	0	30°	45°	60°	90°	
réel x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
$\cos x$ $\cos \widehat{IOM}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\sin x$ $\sin \widehat{IOM}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	

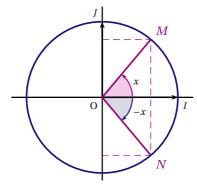
Le graphique ci-dessous permet de visualiser les valeurs remarquables résumées du tableau.



Preuve. sur cahier

Pour tout réel *x* :

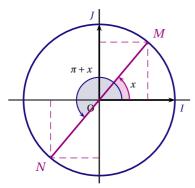
$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$



M et N sont symétriques par rapport à (OI)

Pour tout réel x :

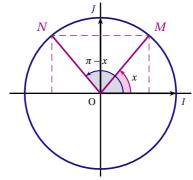
$$\cos(\pi + x) = -\cos x$$
$$\sin(\pi + x) = -\sin x$$



M et N sont symétriques par rapport à O

Pour tout réel x:

$$\cos(\pi - x) = -\cos x$$
$$\sin(\pi - x) = \sin x$$



M et N sont symétriques par rapport à (OJ)

Pour tout réel *x* :

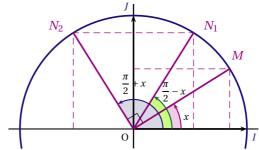
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$



M et N_1 sont symétriques par rapport à la première bissectrice.

 N_1 et N_2 sont symétriques par rapport à (OJ).

Exemple 3. ①
$$\cos \frac{4\pi}{3} = \cos \left(\pi + \frac{\pi}{3}\right) = -\cos \frac{\pi}{3} = -\frac{1}{2}$$

②
$$\sin \frac{3\pi}{4} = \sin \left(\pi - \frac{\pi}{4}\right) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

Équations trigonométriques

Propriété 7

Soit $(\alpha; \beta) \in \mathbb{R}^2$.

- $\star \cos \alpha = \cos \beta \iff \exists k \in \mathbb{Z} \text{ tel que } \alpha = \beta + 2k\pi \text{ OU } \alpha = -\beta + 2k\pi$
- $\star \sin \alpha = \sin \beta \iff \exists k \in \mathbb{Z} \text{ tel que } \alpha = \beta + 2k\pi \text{ OU } \alpha = \pi \beta + 2k\pi$

* Résoudre dans \mathbb{R} l'équation $\cos\left(x + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

- * Résoudre dans]2019 π ;2021 π] l'équation 2 sin $\left(2x + \frac{\pi}{2}\right) = 1$
- ★ Résoudre dans \mathbb{R} l'équation $2\cos^2 x \cos x 1 = 0$

4 Fonctions cosinus et sinus

Définition 8 (Fonctions cosinus et sinus)

- ★ La fonction cosinus, notée cos, est la fonction définie sur \mathbb{R} par cos : $x \mapsto \cos x$.
- ★ La fonction sinus, notée sin, est la fonction définie sur \mathbb{R} par sin : $x \mapsto \sin x$.

Définition 9 (Fonction périodique)

Soit f une fonction définie sur \mathbb{R} et un réel T.

f est **périodique** de période T ou est T-périodique si, pour tout $x \in \mathbb{R}$, f(x+T) = f(x).

Définition 10 (Fonctions paire et impaire)

Soit une fonction f définie sur un ensemble \mathcal{D}_f symétrique par rapport à 0.

- ★ Une fonction f est **paire** si, pour tout $x \in \mathcal{D}_f$, f(-x) = f(x).
- ★ Une fonction f est **impaire** si, pour tout $x \in \mathcal{D}_f$, f(-x) = -f(x).

Propriété 11

- * Les fonctions cos et sin sont 2π -périodiques.
- ★ La fonction cos est paire et la fonction sin est impaire.

Preuve. Pour tout réel *x*, on a en effet :

- $\star \cos(x+2\pi) = \cos x \text{ et } \sin(x+2\pi) = \sin x.$
- $\star \cos(-x) = \cos x \operatorname{et} \sin(-x) = -\sin x.$

Remarque 5. \star Dans un repère, les courbes représentatives de cos et sin « se répètent » tous les 2π .

★ Dans un repère orthogonal, la courbe représentative de cos est symétrique par rapport à l'axe des ordonnées et celle de sin est symétrique par rapport à l'origine du repère.

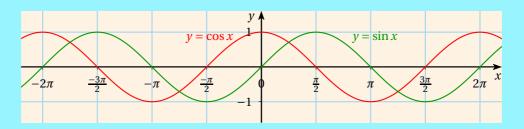
Propriété 12

* Les variations des fonctions cos et sin sur $[0; \pi]$ sont données par les tableaux cicontre.

х	0	$\frac{\pi}{2}$	π
cos	1	0,	-1

х	$0 \frac{\pi}{2} \pi$
sin	

★ Les courbes représentatives de cos et sin sont appelées des **sinusoïdes**.



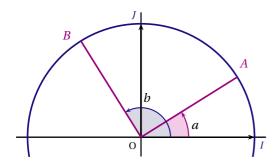
5 Dérivées des fonctions trigonométriques

Propriété 13 (Formules de duplication)

Soit $(x; y) \in \mathbb{R}^2$.

- $\star \cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$
- $\star \cos(x y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
- $\star \sin(x+y) = \sin(x)\cos(y) + \sin(y)\sin(x)$
- $\star \sin(x y) = \sin(x)\cos(y) \sin(y)\sin(x)$

Preuve.



Démontrons la deuxième propriété, les autres en découlent en remplaçant y par -y, $\frac{\pi}{2}-y$, ou $\frac{\pi}{2}+y$. Soient $(a;b) \in \mathbb{R}^2$ et A et B les points du cercle trigonométrique associés respectivement à a et b.

On a donc $A(\cos a; \sin a)$ et $B(\cos b; \sin b)$. D'une part $\overrightarrow{OA}.\overrightarrow{OB} = OA \times OB \times \cos\left(\overrightarrow{OA}; \overrightarrow{OB}\right) = \cos\left(\overrightarrow{OA}; \overrightarrow{OB}\right) = \cos(b-a) = \cos(a-b)$ D'autre part, le repère étant orthonormé, $\overrightarrow{OA}.\overrightarrow{OB} = \cos a \cos b + \sin a \sin b$ On a donc $\cos(b-a) = \cos a \cos b + \sin a \sin b$

Propriété 14 (dérivées)

Pour tout $x \in \mathbb{R}$, on a: $\cos'(x) = -\sin(x)$ et $\sin'(x) = \cos(x)$

Preuve. En exercice guidé

6 Équations et inéquations trigonométriques)

Voir page 272 du livre